3. Trigonometry
d. Trig Identities
Recall the Sum Identities: \[\begin{aligned} \sin(A+B)&=\sin(A)\cos(B)+\cos(A)\sin(B) \\ \cos(A+B)&=\cos(A)\cos(B)-\sin(A)\sin(B) \end{aligned}\]
5. Sum and Difference Consequences
Double Angle Identities
The Sum Identities can be used to derive the Double Angle Identities by simply setting \(B\) equal to \(A\):
\[\begin{aligned} \sin(2A)&=2\sin(A)\cos(A) \\ \cos(2A)&=\cos^2(A)-\sin^2(A) \\ &=2\cos^2(A)-1 \\ &=1-2\sin^2(A) \end{aligned}\]
Starting with the Sum Identities: \[\begin{aligned} \sin(A+B)&=\sin(A)\cos(B)+\cos(A)\sin(B) \\ \cos(A+B)&=\cos(A)\cos(B)-\sin(A)\sin(B) \end{aligned}\] Replace \(B\) by \(A\) to get: \[\begin{aligned} \sin(2A)&=2\sin(A)\cos(A) \\ \cos(2A)&=\cos^2(A)-\sin^2(A) \end{aligned}\] There are two other forms of the cosine identity obtained by using the Pythagorean Identity \(\sin^2(A)+\cos^2(A)=1\). In the formula for \(\cos(2A)\), replace \(\sin^2(A)\) by \(1-\cos^2(A)\): \[ \cos(2A)=\cos^2(A)-(1-\cos^2(A))=2\cos^2(A)-1 \] Again in the formula for \(\cos(2A)\), this time replace \(\cos^2(A)\) by \(1-\sin^2(A)\): \[ \cos(2A)=1-\sin^2(A)-\sin^2(A)=1-2\sin^2(A) \]
As a consequence:
\[ \tan(2A)=\dfrac{2\tan(A)}{1-\tan^2(A)} \qquad \cot(2A)=\dfrac{\cot^2(A)-1}{2\cot(A)} \] \[ \sec(2A)=\dfrac{\sec^2(A)}{1-\tan^2(A)} \qquad \csc(2A)=\dfrac{\csc^2(A)}{2\cot(A)} \quad \]
For tangent, we have: \[ \tan(2A)=\dfrac{\sin(2A)}{\cos(2A)} =\dfrac{2\sin(A)\cos(A)}{\cos^2(A)-\sin^2(A)} \] Now divide top and bottom by \(\cos^2(A)\): \[ \tan(2A)=\dfrac{2\tan(A)}{1-\tan^2(A)} \] For cotangent, we have: \[ \cot(2A)=\dfrac{\cos(2A)}{\sin(2A)} =\dfrac{\cos^2(A)-\sin^2(A)}{2\sin(A)\cos(A)} \] Now divide top and bottom by \(\sin^2(A)\): \[ \cot(2A)=\dfrac{\cos(2A)}{\sin(2A)} =\dfrac{\cot^2(A)-1}{2\cot(A)} \] For secant, we have: \[ \sec(2A)=\dfrac{1}{\cos(2A)} =\dfrac{1}{\cos^2(A)-\sin^2(A)} \] Now divide top and bottom by \(\cos^2(A)\): \[ \sec(2A)=\dfrac{\sec^2(A)}{1-\tan^2(A)} \] For cosecant, we have: \[ \csc(2A)=\dfrac{1}{\sin(2A)} =\dfrac{1}{2\sin(A)\cos(A)} \] Now divide top and bottom by \(\sin^2(A)\): \[ \csc(2A)=\dfrac{\csc^2(A)}{2\cot(A)} \]
Square Identities
The extra two versions of the identity for \(\cos(2A)\) can be solved for the Square Identities:
\[ \sin^2(A)=\dfrac{1-\cos(2A)}{2} \qquad \cos^2(A)=\dfrac{1+\cos(2A)}{2} \]
Start with the identity: \[ \cos(2A)=1-2\sin^2(A) \] Add \(2\sin^2(A)\) to both sides and subtract \(\cos(2A)\) from both sides: \[ 2\sin^2(A)=1-\cos(2A) \] Now divide by \(2\): \[ \sin^2(A)=\dfrac{1-\cos(2A)}{2} \] Now start with the identity: \[ \cos(2A)=2\cos^2(A)-1 \] Add \(1\) to both sides: \[ 1+\cos(2A)=2\cos^2(A) \] Now divide by \(2\): \[ \dfrac{1+\cos(2A)}{2}=\cos^2(A) \]
Half Angle Identities
The Square Identities also lead to the Half Angle Identities:
\[
\sin\left(\dfrac{A}{2}\right)=\pm\sqrt{\dfrac{1-\cos(A)}{2}}
\qquad
\cos\left(\dfrac{A}{2}\right)=\pm\sqrt{\dfrac{1+\cos(A)}{2}}
\]
The plus or minus is determined by the quadrant of the angle \(\dfrac{A}{2}\).
In the Square Identities \[ \sin^2(A)=\dfrac{1-\cos(2A)}{2} \qquad \cos^2(A)=\dfrac{1+\cos(2A)}{2} \] replace \(A\) by \(\dfrac{A}{2}\): \[ \sin^2\left(\dfrac{A}{2}\right)=\dfrac{1-\cos(A)}{2} \qquad \cos^2\left(\dfrac{A}{2}\right)=\dfrac{1+\cos(A)}{2} \] Finally take the square root of both sides and remember to insert a \(\pm\). The sign is determined by the quadrant of the angle \(\dfrac{A}{2}\).
Product Identities
The Sum and Difference Identities can be added and subtracted to get the Product Identities:
\[\begin{aligned} \sin A\sin B&=\dfrac{1}{2}[\cos(A-B)-\cos(A+B)] \\ \cos A\cos B&=\dfrac{1}{2}[\cos(A+B)+\cos(A-B)] \\ \sin A\cos B&=\dfrac{1}{2}[\sin(A+B)+\sin(A-B)] \end{aligned}\]
We add and subtract the identities \[\begin{aligned} \cos(A+B)&=\cos A\cos B-\sin A\sin B \\ \cos(A-B)&=\cos A\cos B+\sin A\sin B \end{aligned}\] to get \[\begin{aligned} \cos(A+B)+\cos(A-B)&=2\cos A\cos B \\ \cos(A-B)-\cos(A+B)&=2\sin A\sin B \end{aligned}\] Dividing by \(2\) gives: \[\begin{aligned} \sin A\sin B&=\dfrac{1}{2}[\cos(A-B)-\cos(A+B)] \\ \cos A\cos B&=\dfrac{1}{2}[\cos(A+B)+\cos(A-B)] \end{aligned}\] Now we add and subtract the identities \[\begin{aligned} \sin(A+B)&=\sin A\cos B+\cos A\sin B \\ \sin(A-B)&=\sin A\cos B-\cos A\sin B \end{aligned}\] to get \[\begin{aligned} \sin(A+B)+\sin(A-B)&=2\sin A\cos B \\ \sin(A+B)-\sin(A-B)&=2\cos A\sin B \end{aligned}\] Dividing by \(2\) gives: \[\begin{aligned} \sin A\cos B&=\dfrac{1}{2}[\sin(A+B)+\sin(A-B)] \\ \cos A\sin B&=\dfrac{1}{2}[\sin(A+B)-\sin(A-B)] \end{aligned}\] These last two formulas are the same but with the roles of \(A\) and \(B\) reversed.
Using the value of \(\cos15^\circ\) found in a previous exercise, find \(\sin7.5^\circ\) and \(\cos7.5^\circ\).
From a
previous exercise, we know that
\(\cos(15^\circ)=0.966\).
Applying the half angle theorem we see:
\[ \begin{aligned}
\sin\left(\dfrac{15^\circ}{2}\right)=\sqrt{\dfrac{1-0.966}{2}}=0.130 \\
\cos\left(\dfrac{15^\circ}{2}\right)=\sqrt{\dfrac{1+0.966}{2}}=0.991
\end{aligned} \]
Using the value of \(\cos75^\circ\) found in a previous example, find \(\sin37.5^\circ\) and \(\cos37.5^\circ\).
\(\sin37.5^\circ = 0.609\)
\(\cos37.5^\circ = 0.793\)
From a
previous example, we know that \(\cos(75^\circ)=0.259\).
Applying the half angle theorem we see:
\[ \begin{aligned}
\sin\left(\dfrac{75^\circ}{2}\right)=\sqrt{\dfrac{1-0.259}{2}}=0.609 \\
\cos\left(\dfrac{75^\circ}{2}\right)=\sqrt{\dfrac{1+0.259}{2}}=0.793
\end{aligned} \]
Heading
Placeholder text: Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum Lorem ipsum